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The Perfectly Matched Layer (PML) has become a standard for comparison in the
techniques that have been developed to close the system of Maxwell equations (more
generally wave equations) when simulating an open system. The original Berenger PML
formulation relies on a split version of Maxwell equations with numerical electric and
magnetic conductivities. We present here an extension of this formulation which intro-
duces counterparts of the electric and magnetic conductivities affecting the term which is
spatially differentiated in the equations. The phase velocity along each direction is also
multiplied by an additional coefficient. We show that, under certain constraints on the
additional numerical coefficients, this “medium” does not generate any reflection at any
angle and any frequency and is then a Perfectly Matched Layer. Technically it is a super-
set of Berenger’s PML to which it reduces for a specific set of parameters and like it, it is
anisotropic. However, unlike the PML, it introduces some asymmetry in the absorption
rate and is therefore labeled an APML for Asymmetric Perfectly Matched Layer. We
present here the numerical considerations that have led us to introduce such a medium
as well as its theory. Several finite-difference numerical implementations are derived (in
one, two and three dimensions) and the performance of the APML is contrasted with that
of the PML in one and two dimensions. Using plane wave analysis, we show that our
APML implementations lead to higher absorption rates than the considered PML imple-
mentations. Although we have considered in this paper the finite-difference discretization
of Maxwell-like equations only, the APML system of equations may be used with other
discretization schemes, such as finite-elements, and may be applied to other equations, for
applications beyond electromagnetics.
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1. INTRODUCTION

Often, part or all of a simulated region is modeled as if extended to infinity and
an open boundary condition must be applied to close the system. In many cases,
the open boundary condition consists of absorbing everything that comes out of
the simulated region with, ideally, no reflection, and is then called an Absorbing
Boundary Condition. For the wave equation, most ABCs can be grouped into
two categories: “One-Way” ABCs that factorize the wave equation and extract an
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operator that permits only outgoing waves (higher order scheme can be derived
by using products of one-way operators) or ABCs that use an absorbing layer
which damps the outgoing waves. High order algorithms using the absorbing layer
technique have been first obtained by Berenger using a split formulation of the
wave equation, known as PML for Perfectly Matched Layer[2]. A lot of work has
since been published concerning the PML technique and the reader can refer to
[1,3,6,7,9, 13], just to cite a few. Good reviews of ABCs are given in [8, 6, 7].

In [10], we have presented a formulation of a centered finite-differenced form of
the wave equation which can be tuned to describe either a one-way operator or a
PML layer. Moreover, we have presented a new ABC using this formulation, which
presents characteristics of both one-way and PML ABCs. We have shown that the
hybridization was beneficial. In this article, we generalize this approach and present
a new kind of PML which is asymmetric, and is then labeled APML for Asymmetric
Perfectly Matched Layer. By construction, it is a superset of Berenger’s PML, to
which it reduces for a specific choice of free parameters. Ignoring discretization
errors the APML, like the PML, does not generate any reflection at any frequency
and any angle following a specific prescription of parameters. Unlike the PML,
it generally damps the wave asymmetrically. This asymmetrization is due to an
additional numerical term relative to the Berenger split-field formulation. This
term is formally symmetric to the damping term of the PML but acts on the
quantity which is differentiated in space rather than the one that acts in time. As
already noted in [11], this term appears naturally when recovering the infinitesimal
limit of a centered finite-differenced formulation of the wave equation, which can
be established using a minimal set of geometrical and operational requirements.
An additional parameter, which is fixed in the PML formulation, but is free in the
APML one is the wave speed for each direction of propagation.

At the infinitesimal limit, the coefficient of reflection of an APML layer is the
same as that of a PML layer, provided a scaling of the conductivities, and is inde-
pendent of the third free parameter which has been introduced into the equations.
At this point, the introduction of the additional parameters seems pointless for the
absorption of outgoing waves. However, the finite-difference implementation of the
APML does not behave as its infinitesimal counterpart does. We present several
possible implementations of the APML in finite-difference (including the one pre-
sented in [10]) and analyse their response to the excitation of a plane wave at an
incoming angle by means of a coefficient of reflection, depending on the frequency
and angle of the incident wave. The results are contrasted with a classic implemen-
tation of the PML as given in [2] and an implementation of the PML of our own that
we presented in [10]. They show that, for plane waves, our APML implementations
provide higher absorption rates than the considered PML implementations.

1.1. Notations

In this article, we will consider quantities discretized on orthogonal and regular
space-time grids. On such a grid, a quantity A will be denoted A%, A%, or A%, for
respectively, a 1-, 2- or 3-dimensional system, where i is the time index and j, k
and | are the space indices along x, y and z. Note that a location defined half way
between j and j+1 will be noted j+1/2. On such a grid, we define the operators of
centered finite difference A, and finite average X,
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where u = (z, y or 2), dt is the time step and ¢, is the mesh size along u.

1.2. General considerations on explicit discrete representation of the
wave equation

We give some general considerations on explicit calculation of the wave equation
on a discrete space-time grid that have led us to the introduction of the APML
medium (these considerations were already given in [11]).

For simplicity, we restrict this part to the study of a one dimensional wave-
equation in vacuum of the form

8’E , 0’FE

5 = (5)
which is equivalent to the system
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We consider solving this system in a discrete space and use the Yee discretization
scheme [12] where E and B are staggered in space as well as in time (see Fig. 1).
If we assume that the discrete solution is explicit (i.e. the evaluation of a quantity
at a given time step involves only quantities known at previous time steps) and is
linear, we then have
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where «a,, and 3,,, are constants.
If we add the constraint that the equation should be minimal and symmetric,
then the most compact possibility is given by
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where a, 8, and B, are three constants. For the modeling of (5), we present two
ways to determine these constants. .
One way is to consider a wave e “*=*%) and use it in (9)

eiwét/Z — ae—iwét/Z + ﬂpe—ikém/2 T ﬂmez’kéz/Z (10)

where the + and F discriminate the cases of waves propagating forward or
backward.

We then make a long wavelength approximation and assume that wdt < 1 and
kdx < 1, so that we can expand and truncate the exponentials, giving

1+ iwdt/2 = a(l —iwdt/2) £ B, (1 —ikdx/2) F B (1 + ikdz/2)

Requiring w and k to be real (propagation in vacuum) and w = ke, we can
separate the real and imaginary parts, yielding a system of four equations that,
once solved, gives

a=1and 3, = B = cdt/éx.

Another way relies on the fact that (9) can be rewritten

i1 ; i1 : i+1/2  pitl/2 i+1/2 i+1/2
B =B B B Binp s Bt B g
5t Ty T oz 78 2
with
21—
T R
CE = 5 ite (12)
o 2 Bp—Bm
B it 14«
At the infinitesimal limit, (11) becomes
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which will describe a wave equation in vacuum only if o = op = 0 and ¢cg = ¢,
giving a =1 and B, = B, = cdt/dz.

The term o has a physical meaning, but that is not the case for 6 which may
appear as an undesirable term. It turns out that, as we have shown in [10] and [11],
this term plays a role in the discretized form of (5). For example, the Sommerfeld
outgoing-wave boundary condition is given by (for waves propagating forward)
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and has the same form as (11).



2. THEORY OF THE ASYMMETRIC PERFECTLY MATCHED LAYER

In order to understand the implications of the additional coefficient op in (13),
we have introduced it as an additional term in a split form of Maxwell equations,
following Berenger’s presentation of the PML medium [2]. As the analysis will
reveal, the resulting medium has properties similar to a PML medium (to which it
reduces for a choice of parameters) although it introduces some asymmetry in the
coeflicient of absorption.

2.1. Definition of the APML medium
For the TE case, we define the APML as
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For ¢; = ¢y = c; = ¢; = cand 5, =0y = 7, = 7, = 0, this system reduces
to the Berenger PML medium, while adding the additional constraint o, = oy =

» = 0 leads to the system of Maxwell equations in vacuum.

oy =0
2.2. Propagation of a Plane Wave in an APML Medium

We consider a plane wave of magnitude (Eg, H,50, H,y0) and pulsation w prop-
agating in the APML medium with an angle ¢ relative to the x axis
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where a and § are two complex constants to be determined.
Introducing (21), (22), (23) and (24) into (16), (17), (18) and (19) gives
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Defining Z = Ey/ (H.z0 + H.y0) and using (25) and (26), we get
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Adding H ;0 and H,, from (27) and (28) and substituting the expressions for
a and § from (29) and (30) yields
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which is the impedance of vacuum. Hence, like the PML, given some restrictions
on the parameters, the APML does not generate any reflection at any angle and
any frequency. As for the PML, this property is not retained after discretization,
as shown subsequently in this paper.

Calling 9 any component of the field and 1) its magnitude, we get from (21),
(29), (30) and (32) that
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We assume that we have an APML layer of thickness ¢ (measured along z) and
that 0, = 7, = 0 and ¢, = c. Using (33), we determine that the coefficient of
reflection given by this layer is

Rapup (8) = (0= cosoleacatTac/ca)do—(os cosip/cacn—Tac/e)d
e—2(02 cos p/eocz)d (34)

which happens to be the same as the PML theoretical coefficient of reflection if
we assume ¢, = c¢. Hence, it follows that for the purpose of wave absorption, the
term 7, seems to be of no interest. However, although this conclusion is true at
the infinitesimal limit, it does not hold for the discretized counterpart.

3. DISCRETIZATION OF THE APML

In this section, we derive several possible finite-difference discretizations of (16)
to (19) in one dimension, followed by the extension to higher dimension. The reader
who is not interested in the details of these derivations may jump to the next section
and find a concised list of the proposed discretized schemes into Appendix B.



3.1. In one dimension

Equations (16), (17), (18) and (19) have all the form of a one-dimensional
equation

OF oG _
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3.1.1. FEzxponential time and space stepping

A possible implementation consists of applying the exponential time-stepping
method [6] to time and space. The discretization of
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using the exponential time-stepping method is given by
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Similarly, we can apply the method in space rather than in time and the dis-
cretization of cu% + 7,G is then given by
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In the form of (11), (40) becomes
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For consistency, we can verify that at the infinitesimal limit, 0 — o, ¢ — ¢,
and 3¢ — &,. This implementation will be labeled APML-Exponential.

3.1.2. Direct assignment of coefficients

We present here a different implementation. Instead of directly deriving a dis-
crete approximation of the infinitesimal equation being modeled, we pose the form
of the algorithm and assign the coefficients so that the resulting algorithm matches
properties of the equation it is modeling.

Following the considerations of 1.2, we pose the form to be

FiPY? = aF 72 4 B,GEL ) — BnGi_y s (46)

We have seen in 2.2 that in an APML medium, a wave experiences a modification
of its amplitude as it propagates and that the amplitude of the modification is
dependent on the direction of propagation. Let us define t; and t; to be the
coeflicients of transmission at location j for waves propagating respectively forward
and backward. Hence, a wave propagating forward having amplitude A at location
j —1/2 will have the amplitude At at location j and Atjt;trl /5 at location j+1/2
while a wave propagating backward having amplitude A at location j + 1/2 will
have the amplitude At; at location j and At;t;_l /2 at location j — 1/2.

We consider now a forward-propagative wave of the form e““t~*%) with ampli-
tude A at location j — 1/2. At location j, we have from (46)
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while considering a wave propagating backward gives
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Steady state approrimation Assuming a steady state approximation, the expo-
nentials become unity and we get

a=1+ ﬂptj+1 /2 = Bm /tf (49)

for waves traveling forward and

a=1+Bmt; = Bolt; (50)

for waves traveling backward.
Using, from (12)
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and setting c? = ¢, we can solve (49), (50) and (51) to get a, B, and B,

-1 + Cuy ét (t + t + t t (tpp + tmm)) + tptmmtpptm
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where we have used the notation

tp = & (55)
tm =t (56)
top = t;_+1/2 (57)
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for better readability.
Note that we also have
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0u (tp + tm + tptm (Epp + tmm))
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This implementation will be labeled APML-SSA for APML-Steady State Ap-
proximation.

Long-wavelength approximation Let us now make a long wavelength approxi-
mation of (47) and (48). We assume that wét < 1 and kdz < 1 so that we can
expand and truncate the exponentials and get

tr (14+iwdt/2) = atf (1 —iwdt/2)
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for waves propagating forward and
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for waves propagating backward. We also impose the speed of waves to match
the speed of the APML layer, that is that kj =k; =k;j =wc; for any j.

Since the coefficients of transmission take care of amplitude modifications, w and
k are real, and separating the real and the imaginary parts of the two preceding
equations, we get

a =1+t — Bu/t] (64)
a=-1+ ’Yj+1/2ﬂpt;r+1/2 + ’Y;>1/25m/75;r (65)
0= 14 Bty 1o — Bolt (66)
o= =14 1/2Bmt; /5 + Vir1/2Bp/t; (67)

where vj11/2 = #ZM and y;_1/2 = #ﬁét'

We have obtained four independent equations linking o, 3, and 3,,. We need
to discard one if we do not want to impose any restrictions on the values of tj,
tr t;_-l—l o and &7, ,,. We want to retain (64) and (66) because they represent
the lowest order of approximation. Assuming that we consider an APML layer for
absorbing waves propagating forward, we are more interested in verifying the next
order of approximation for waves propagating forward and will then keep (65) and
disregard (67).

Then, we solve (64), (65) and (66) to obtain

L+ Ym + tmtpp (Yp + Ym) + tptmmipptm (7p — 1)

5 = 2tm (1 + tmmtp) (69)
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where we have, as in the previous subsection, the same notation shortcut using
tp; tm; tpp; tmm as well as

Tm = Vj-1/2
Yo = Vi+1/2

For completeness, we note that we also have
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O tm by & byt (b + ) )
“ 0t Ym + tmtpp [Ym + Vp (L + tptmm)]

1 = 2 tn =ty byt (b — try) -
6t Ym + tmtpp [Ym + Yp (L + tptmm)]

10



J

We now define o ; = fij—1/2 oydu/ fzj—1/2 duand s, ; = f_j_1/2 Gudu/ fij—1/2 du.
It follows that
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totmm = e Tmi%t (78)
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Rewriting (47) and (48) in terms of ¢, tm, tpp and tym, gives
eiwot/2 _ [ o—iwdt/2 /Bptppe—ik;'6z/2 + IBmAeik,tém/2/tp (80)
eiwét/2 — ae—iwdt/2 + ,Bpe_ik;dz/Z/tm _ Bmtmmeik;éz/2 (81)

By substituting (68), (69), (70), (78) and (79) into (80) and (81), we remark
that (80) and (81) are independent of 2. As the numerical results will show,
this property seem to hold in practical implementation. The wave reflected by an
APML layer under this implementation seems to be independent of 7§, although
the coeflicients a, f, and B, are different, which is quite a remarkable behavior.
We note that it then reproduces a property of the APML which was demonstrated
in 2.2.

This implementation will be labeled APML-LWA for APML-Long Wavelength
Approximation.

3.1.8. Hybrid PML-Sommerfeld
Another possibility relies on assigning the coefficients «, 3,, and B, in (46)
following the requirements that the algorithm must converge to:
e the standard Yee scheme (a =1, 8, = (., = cdt/dx) when all the coefficients
of transmission equal unity,
e the Sommerfeld outgoing-wave ABC (a = 1—f,,, Bp = 0, B = 2¢dt/ (0x + cdt))
when the coefficient of transmission of the next plane is zero.

An infinity of possibilities exist and we will only consider the one that we have
presented in [10] which is given by (for a wave traveling in the forward direction)

ct 0x — cét 4 L cot
a = 1- [1 t (m) (1 _tj+1/2)] ttiae s, (82)
cét
b = 5, (83)
_ 4l ox — ¢t e
Bm =t ox [1+ ((5m+c5t (1 tj+1/2) (84)

This implementation will be labeled APML-Hybrid.
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3.2. Extension to 2 dimensions and beyond
3.2.1. The scalar wave equation

We introduce the notation

0
o | _
Au —cu%—i—au (86)

with (u = z,y, 2).
Assuming a three dimensional scalar wave equation of the form

Tof: = Azge (87)
Lyfy = Aygy (88)
szz = Azgz (89)
Fzgw = Amf (90)
Tygy = Ayf (91)
I.g. = Azf (92)

f = fotfytl: (93)

the centered finite-difference system is simply obtained by replacing the opera-
tors T, and A, by their discrete counterparts

', = A;—o0u.2 (94)
Ay = Ay +T,X, (95)
Each equation has then the form of (44) and can be written in the form of (46)

for direct computer implementation, the coefficients being determined using one of
the prescriptions described in 3.1.

3.2.2. The vector three dimensional Mazxwell equations

We consider Maxwell equations written in normalized units

0B
E = —-VxE (96)
OE
b B-—
e V x J
V-E = p
vV-B = 0
which can also be expressed as
0B
W = —-VxE (97)
OE
- = B - F
5 V x J+V
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where F' = 0 in virtue of the equation of continuity % +V-J=0.

oF
ot
vV-B = 0

= V.E-—

p

We can derive from this a wave equation on the electric field

B
ot?

—AE:a—J—Vp

(98)

A possible implementation consists of directly applying the algorithm described
in 3.2.1 for the multidimensional scalar wave equation to each component of the

electric field in (98)

|
T.E,,
E;

T.E,
T,E,
T.E

2Ly,
EC'/
r.E,
I'.E.,
E,

the magnetic field being given by

Apug — Jg |
Ayuy Cyuy
Au, T u,
Emz + E:cy + E:cz
Agvg Tpvg
Ayvy — Jy Lyvy
A, T.v,
Ey+E,+E,
Awﬂ]w szw
Aywy Lywy
Azwz - Jz szz
E,+E, +E,

B, = v,—wy

By, = w;—u,

B, = wuy—,

(99)

(100)

(101)

(104)

For completeness, the derivation of the explicit finite-difference discretization of
(99) is given in Appendix C.

Using the formulation (97), an alternative implementation is given by
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Ezz + Ezy + Ezz
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Cepe
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F
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_Any
—AzJ,
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A third implementation may consist of using a split form of (98):
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A,B. TyBsy = —A,E.
—A.B, I.B,. = A.E,

By + Ewy + E,, B, = Bwy + By
_A:ch

—J, T,By, = A.E.
AzBa: Fszz = _AzEz
Eyo + Eyy + Ey. B, = By + By
A.B,

—AyB, I'yB,, = —AEy
—J. I,B., = AE,
E.,+ Ezy +E,, B, = B+ Bzy

(113)

(114)

(115)

Several considerations help us choose between these three implementations.

Remarking that

it follows that the first and second implementations are equivalent.

Byy = —wy
B, = v,
By:c = Wy
Byz = —U
B., = -uv,
B, = wuy
F, = wu,
E, = wy
F, = w,

Now, if we define the operator I';! such that

F;lfuf =f

then, using (105) to (112), we have
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r,r,r.F = T,T,T,(F,+F,+F,)

T,T. (AsEy — pz) + ToT. (A E, — py) + T.Ty (ALE, — p,)

A, (T;'TyL. (A,F — J,) + A,T.B, — A,TyB,) —T,I.p,

Ay (=AT.B. +T,'T,T. (AyF — J,) + A:T4B,) —TyL.p,

A, (A,TyB, — AT, B, + T 'T, T, (A.F - J,)) =T, T.p,

= (AT, 'T,T. + AT, 'T,T, + A2T,'T,T,) F (126)

_+.
+

Hence, F' depends only on itself and not on any other term and remains zero
if is zero at any given time. This demonstration is valid in the discrete space
only if the discrete operators A and I retain their properties of associativity and
commutativity. It can easily be shown that this is the case, and it follows that all
three implementations are equivalent. We have verified this result numerically. In
practice, the third one is preferred because it is more efficient.

4. REFLECTION OF A PLANE WAVE STRIKING AN APML

We assume that we solve the following system

il = oiF g+ ﬂp,jGi—z}ﬁ/% - 5m,jGi—zlﬁ/2k (127)
S = F (G - G )
F = R
;Jrglﬁ/zk = aj+1/2G:j1—i{f/2k + Bpjr1/2Fjrik = Bmjra/2
;Jrglﬁ/mc = Gj;jl-i{f/zk + cg—;t (Fjisr — Fi)
on a 2-D grid.

4.1. Analytical evaluation of the coefficient of reflection

We consider a plane wave whose axis of propagation is at angle ¢ from the
normal of the absorbing layer. As schematically shown on Fig.2, multiple reflections
occur in an APML layer. The calculation of the coefficient of reflection for the entire
layer requires the knowledge of the coefficients of reflection at each plane of the layer
(locations j, j+1/2, j+1, j+3/2, etc.).

4.1.1.  Coefficient of reflection given by a plane passing through a row of nodes

We first evaluate the coefficient of reflection at a row passing through a node
(location of F) inside a slice where the APML scheme is applied. The rest of space
is described by centered finite-difference of the wave equation in vacuum. Hence,
only the plane where the APML scheme applies will generate reflections.

Combining equations from the system (127), we deduce that (using the notation

vy = 28 with u = z,y)
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i+1
i

+ + + +

=0

2 i
vy [—ij+1 -

Vg [517 (

i—1
Fj+1

' i1
Fjy1t+a (F;k+

J'ik (_2 + 21/3 —a+ BPVE + Bmyz)
Fj’k_1 (1 + 20 — ZQUZ — BpVs — Bmyz) — aij_l

V+HELY)]

- Fjﬂ) + Bm (F;:% - F;—1)]

(128)

We assume now a plane wave of amplitude e¥“t=%=2=ky¥) striking the APML
slice at incidence ¢ (k; = kcos (p), ky = ksin(¢)). We assume that the norms of
k; and k, are conserved by the transmitted and the reflected waves and we define
the coefficient of reflection to be the complex number r. Under these conditions, the

transmitted wave is given by (1 — r)

ei(wtfkmsz

v¥) | while the signal in front of the

slice is the sum of the incident wave and the reflected one, that is e?(“t—kez—kyy) 4
rei@ttk=z—kyy) Agsuming that the slice stands at j, we have

Fiit = (1-r)e™ (129)
o= 1-7 (130)
Filo= (1—-r)e ™ (131)
Fi2o= (1—r)e (132)
jk+1 = (1-r)e *o% (133)
j,c_l = (1-r7) etkvoy (134)
Fil = (1—r)eteithiy (135)
il = (1—r)efCwitthiy (136)
Fly, = (1—r)ethe® (137)
Filly = (1—r)eleiizkedn) (138)
F;flk = ethade 4 po—ikedz (139)
Ffﬂk = ¢i(wdttheda) 4 p.ci(wot—kade) (140)
Substituting these into (128), we get
ik 02
Thode = % (141)
with
a = %4 (=242 —a+ Byvs + Bmva)
+ e (14 20— 2av] — Bypvy — Bmly) — ae” 20
+ Vz (aefz'wét _ 1) (efz'kyéy + ez’kyay)

+ voBpe Fe0T (14 e 0t) (142)
b = B (1—e ™) (143)
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The calculation of &k, and k, for a given w is detailed in Appendix A.

The coefficient of reflection r, ;. for a wave propagating backward along x is

given by the same formula, switching 8, and B,.

4.1.2.  Coefficient of reflection given by a plane passing between two rows of nodes

A the locations of G, we have

i+1/2 i—1/2 ; ;
G;,j-i{l/Qk = an,j-f{l/ﬂc + BoFj i1k — BmFj (144)

Using the same considerations as for calculating the reflection at the node leads us
to the coefficient of reflection at the internode in x

.+ a-— beikzt?z
"i T ¥ be ikeoz (145)
with
o = (eiwét/Q _ ae—iwdt/2) cos () + ﬂpe—ikméwﬂ (146)
b = fm (147)

Again, the coeflicient of reflection r; for the wave propagating backward relative
to x, is obtained by switching 3, and 3,,. We also note that the knowledge of
the coefficient of reflections r™ and r— of one slice also gives us its coefficients of
transmission tt =1—rt andt— =1—7r".

4.1.8.  Coefficient of reflection of the entire APML layer

We assume that the APML layer lies from jg to jo+nr. Knowing the coefficients
of reflection and transmission for both directions of two consecutive slices, say slices
. _ . . . +
at jo+nr—1/2 and jo+nr, we can calculate the coefficient of reflection R].OinLi1 /2
due to the coupling of these two slices (for clarity, we use the notation shortcut for
indices: 1 =jo +nr —1/2 and 2 = jo +ny)

+ ot gttty —ikedT | gty —ikedT (.t —ikeOT
Rl 1 = 1 —tiritre +tiritle (rirse )
+ b= —ikadT (.~ —ikelz)2
—tiratye (7'1 Ty € )
o0
+ _ g4ty ,—ikedw P . AR
ri —tirytie Z(—rl rye )
n=0
+ 44— —iky 0
tiryt e

+
— o 148
V14 rrfeikeds (148)

We can iterate backward from j = jo+nr to j = jo in order to get the coefficient
of reflection of the entire layer, given by R;-t), using at each iteration the formula

+pt g —ikgbz

il (149)
— ot — =

L+r; Rl e ks

+
Rj =r;
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4.2. Evaluation of the coefficient of reflections via numerical

experiments
4.2.1. In one dimension
We compute the quantities
i+1 ; i+1/2 i+1/2
FJH_ = oF; + 5p,jG;+1//2 - ﬂm,jG;—1//2 (150)
i+1/2 i—1/2 i :
G;'-H//z = aj+1/2G;'+1§2 + ﬂp,j+1/2F;+1 - ﬂm,j+1/2F; (151)

on a 1-D grid of length N, + Nappyr- At the left end of the grid, the field is
imposed to be F (w,t) = Hy (t) sin (wt) where Hy (¢) is the Harris function

when 0 <t < Ljc

H =
7 (®) 0 otherwise

10—15 cos(2mct/L)+6 cos(4dmct/L)—cos(6mct/L)
{ 32 (152)

where L = N, and c is the speed of waves. For j < N,, we model propagation
in vacuum, so that we set @ = 1 and 8, = B, = ¢dt/dz. For j > N, the coefficients
are set according to model either a PML or an APML medium. A reference solution
is concurrently calculated on a 2N, grid simulating propagation in vacuum only:

i+1 i Ot ( it1/2 i+1/2
Fjj“ = ;ef,j + oz (Gref,j+1/2 - Gref,jq/z) (153)
i+1/2 . i—1/2 cot , . )
Greliviy = Greglipp + 5z (Frefj+r = Fres;) (154)

The time step is set to 6t = 0.55z/c and the run is stopped when the time ¢
reaches t = 2N,6z/c (note that we use 6t = 0.5z /c for convenience and because it
is below the Courant limit up to dimension 3, so that the results are valid in 1-D,
2-D and 3-D). The coefficient of reflection is then computed as

i< F_Fre 2 G_Gre 2
ey | T [(F = Fre)” +( 7] 55

2 2
Zj>Nm [Fref + Gref]

4.2.2.  In two dimensions

We consider the quantities

Fife = Fign+BpsGolils on = BmiGol o (156)
Fyie = Fuat %t (G;J,rjlk/jl/z - G;J,rjlk/fl/z) (157)
Fiit = RO +Fh (158)
;:Jr#f/% = aj+1/2G;:j1-|{f/2k + Bpj+1/2Fs i1k = Bmjr12Fa e (159)
;—;161/2 = G;,_jllc/fl/2 fsiyt ( gj,jk—i-l - F;,jk) (160)
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on two 2-D grids (see Fig. 3). The first, that we label “Main grid”, is composed
of a large vacuum region bounded along x by two APML regions (at the lower
end a large region to simulate vacuum, at the upper end the APML layer to be
tested). A second grid, labeled “Secondary grid”, is composed of a small vacuum
area followed by a large APML region. Periodic boundary conditions are applied
in the y dimension on both grids. Both grids have the same mesh size dz and dy
in each dimension and the same length L, = N,d, in y.

We fix dz = 1, dy = 1, 6t = 0.5, w and ¢. Using (157), 0y = 1, 6t = 0.5, w, ¢
and the result given in Appendix A, we evaluate the discrete k,. From this, we can
compute the wavelength along y: A\, = 27/k,. Because we want A\, = L, = N,d,,
we take N, to be the integer part of \,/d, and recompute Ay, = Ny, and k, =
27 /Ay. From this, we recompute ¢ as

5t e~ 0-5ikydy _ p0.5ikydy

¢ = arcsin By 0Biwdt _ g—0.5iwdt (161)

We then evaluate k, using the method of Appendix A.
At the lower end in z of the secondary grid, the field is imposed to be

i { 10—15 cos(2wct/L)+6 c;);(47rct/L)—cos(67rct/L) gin (wt _ kyy) lf 0<t< 0.5L/C
sk 7 sin (wt — kyy) otherwise
(162)
with y = kdy and t = idt.
We label the quantities computed on the secondary grid as *¢°F and °¢°G. At
the lower end of the secondary grid, we impose

SecFék = F;k (163)
and calculate the following *¢°G on the grid in z:

. - 5t . .
G = G+ S (PR, = Fy) (164

The same field is also launched into the main grid in the vacuum region at
location j,, close to the APML region to be tested

i+1/2 id1/2 cot , . )
;,js+1/2k - G;,js+1/2k + E (sz’]_s“k - Fzz,jsk - F;,k) (165)

and we remove the contribution of the launched wave on E at js

il i cot [ _iv1/2 i+1/2 i+1/2
Faﬁk - F;,jsk + St (G;,js+1/2k = G;,1/2k - G;,jrl/ma) (166)

so that the incident wave does not affect the part at j < js on the main grid.
Hence, only the reflected wave is present in this region where it is measured at the
lower end of the vacuum region.

4.3. Results

We compare the results we obtain using the APML technique with two im-
plementations of the PML. The first one is the original implementation given by
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Berenger [2] (labeled “PML”) while the second is one of our own [10] where we ap-
plied a steady state analysis in order to constrain the coefficients (labeled “PML-o
adjusted”).

In all the calculations, we have used

0 =0m (@> 1<j<N (167)

with o, = 4/0z, A = 55z and n = 2. The number of mesh points along z in
the layer was N; = 10. We also define the constant p such that o; = po;. We have
also set ¢; = ¢ for any j. Given these prescriptions, a summary of the algorithms
used is given in Appendix B.

For a given angular frequency w, the results are given as function of the vacum
wavelength A\ = 27c/w (where c is the speed of wave in vacuum at the infinitesimal
limit) and the mesh size dz, or the period 7 = 27 /w.

4.3.1.  In one dimension

The analytical coefficients of reflection for the implementations APML-exponential,
APML-SSA and APML-LWA are displayed for several values of p in Figs. 4-6 re-
spectively. We remark that the best result is always obtained for p = —1. We
also notice that the implementation APML-LWA has the property of producing a
coefficient of reflection that is independent of the value of p or, in other words, in-
dependent of . We recall that this is a property of the APML at the infinitesimal
limit (see 2.2). Finally, we note that the APML-SSA implementation is equivalent
to the APML-LWA implementation for p = —1.

On Fig. 7, we have plotted for comparison the coefficients of reflection given by
the PML, PML-o adjusted, APML-Exponential (p=-1), APML-Hybrid and APML-
LWA. Both the analytical result and the results from the numerical experiment
described in 4.2.1 are displayed. We remark first (as already noted in [10]) that our
implementation of the PML (the PML-o adjusted) performs significantly better
than the standard PML implementation. We remark also that all three APML
implementations perform better than the standard PML, with the APML-Hybrid
and the APML-LWA implementations performing the best.

4.8.2.  In two dimensions

We display in Figs. 8-15 the coeflicients of reflection for the different implemen-
tations of the PML and the APML as a function of the angle between the incident
wave axis of propagation and the normal of the absorbing layer. As in the 1-D case,
we remark that the results obtained for the APML-LWA is independent of p and
that APML-SSA(p=-1) gives the same result as APML-LWA. The sharp “spikes”
that are present in most of the figures are attributed to destructive interference
inside the absorbing layer. A comparison of the different PML and APML is also
given in Fig. 16 for 7 = 2 /w ~ 200z /c. Results from both analytical and numeri-
cal experiment are presented for a wide range of angles and they match very well.
Here again, we conclude that the PML-LWA implementation performs the best for
the plane wave analysis that we have considered.
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5. CONCLUSION

From general considerations on explicit calculations of the wave equation in the
discrete space, we have deduced a simple form of the equation that has led us to in-
troduce additional terms. The analysis of the new equation shows that it describes
an asymmetric Perfectly Matched Layer medium (thus labeled APML). The analy-
sis of the new medium has shown that the absorption efficiency is equivalent to that
of a PML at the infinitesimal limit. However, in the discrete space, several imple-
mentations were derived and the results have shown a significant improvement over
a standard PML, both in one and two dimensions, when analysing the response of
the considered PML and APML implementations to a monochromatic plane wave.

6. FURTHER CONSIDERATIONS

In real calculations, the structure of waves impinging on the absorbing layer
are more complicated than the monochromatic plane wave considered here, and
further studies are needed in order to fully compare the efficiency of APML with
that of other techniques. Because different applications will involve different wave
structures, the result may well be application dependent.

Also, some exploration of the properties and capabilities of the APML system
has been left for future work. For example, in an APML medium, the velocity of
waves can vary spatially. We note that various authors have already considered a
progressive slow-down of the wave into sponge layers in order to prevent reflection
[4, 5]. Additional studies are needed to determine how the spatial variations of this
velocity should be tailored and combined with the modulation of wave amplitude,
as is possible with an APML, to improve the absorption efficiency of the layer at
the discrete level.

Although the motivation for the introduction of the APML came from the analy-
sis of a finite-difference formulation of the wave equation, and only a finite-difference
implementation of the APML has been considered in this paper, there is nothing
fundamental linking the APML formulation, as given in section 2.1, to the finite-
difference technique. Hence, different discretization of the APML, such as schemes
based on finite-element or finite-volume methods, are possible and may provide
algorithms with interesting properties and performance.

Finally, like the original PML [2], the APML derivation that has been presented
in this paper involves a splitting of field components and is thus only weakly well-
posed [1, 9]. Although, as mentioned in [9], instabilities due to the weakly well-posed
property of the split-field formulation are not observable in most practical cases, an
unsplit strongly well-posed formulation of the APML would be of interest (unsplit
formulations of the PML can be found in [3, 7, 9, 13]). As for the PML, such a
formulation may permit the derivation of APML medium formulations for a variety
of equations, broadening its range of application beyond electromagnetics to such
fields as acoustics, quantum mechanics, and others.

APPENDIX A: EVALUATION OF THE DISCRETE WAVE NUMBER
Given the equation

Fitt = oF} + 8,65 — BnGiTY, (168)
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supporting the propagation of a wave eHwt=kz) we have
eiwét/Q — aefiwét/Q + ﬂpefikéz/2 _ ﬂmez’kﬁz/Q (169)

for a wave propagating in the forward direction. We suppose that w is known and
that we want to know the corresponding value of k. Multiplying the last equation

by e~ 92/ we obtain a second order equation on e~#92/2
8, (efikéz/2)2 + (eiw6t/2 _ aefiwét/2) e ikoz/2 _ g (170)
that we can solve to get
b2 —4
kE=—2In —b+ Vb? — dac (171)
2a

with
a = fBp
[ (eiwdt/2 _ ae—z’w&t/Z) (172)
c = —Pm

The solution for waves traveling backward is obtained by interchanging 3, and
Bm- In 2-D, we have

i i i+1/2 i+1/2

Fzz—,‘r]}c == azF;,]k + Bz’pr,j-‘f{l/2k - ,8$7mG;_§_/1/2k (173)
i+1 i i+1/2 i+1/2

Fith = oy F o+ BynGotils o — BymGit (174)

Assuming k, = kcosy and ky = ksin g, we get

eiw&t/2 cosp = awe—iwdt/2 cosp + ,Bzc,pe_ikxéw/2 _ ﬂw,meikméw/2 (175)
eiwét/2 sin<p — aye—iw6t/2 SiII(p + ﬁy pe—iky6y/2 _ By meiky6y/2 (176)
so that
b2 — 4a,c
ky = —21n ra— ””] (177)
with
Az = ,Bm,p
b:c — (eiwét/Q _ ae—iwdt/2) cosp (178)
Ce = _ﬂz,m
and
—by + /b7 — dayc,
k, = —21
y n %0, (179)
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with

ay = Byp
b, = (eiw6t/2 _ aefiwét/2) sin
¢y = —PBym

APPENDIX B: SUMMARY OF PML AND APML ALGORITHMS

We assume o; given at each location j.

i+1 i i+1/2 i+1/2
F;,jk - O‘J‘F;,jk + 'prijJ-i-l/Zk - Bm,sz,j—uzk
il i et ( iv1/2 i+1/2
Fy,jk - Fy,jk + E (Gy,jk+1/2 - Gy,jk—1/2)
i+1 i+1 i+1
Fio = B +F
i+1/2 o i—1/2 : i
vrijon = 172G U or + Bpir1/2Fiiay — Bmja/2Fjy,
i+1/2 _ Ni—1)2 cbt , :
Gy,jk+1/2 - Gy,jk+1/2 + E (F;k+1 - F;k)
B.1. PML
aj = e—aj(St
1 —_ e—a,-dt
Pri = ojoz/c
J
Bmi = Ppi

B.2. PML-o adjusted

aj = e % ot
1 _ efo';-((;t
ﬁpaj = *
ojdz/c
Pmi = Bpi
with
t] — e—0j5$/2
and

o tiyre — 1/t
ox
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(190)

(191)
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(193)



with 7; = po;

ﬂp,j =
Pmj =

with

Qa;
Bpi =

Bm,j =

with ; = po; and

B.3. AP

a; =

Bpi =

Bm,j

B.4.

Il

ML-Exponential

efa'j5t

ﬁj 1— e—ajét
U_j 1— e—Ejéz'/c

—oj;0z/c
e 7%/,

APML-Hybrid

1o oot 1+ oz — cot (1—tj412) +(’itt-

éx é + cot Jti/2 oy IT1/2
cot
ox
cot ox — cot
— — )l (1-t t;
oz [ + (&: +C(5t) ( J+1/2)] j

t] — 6—0561‘/2
B.5. APML-SSA

—14 22 (ty + tm + tptm (tpp + tmm)) + tptmmtpptm
1+ % (tP + tm + tl’tm (tpp + tmm)) - tptmmtpptm

2t (1 + tmtp)

1+

Sz

9L (ty + tm + tptm (tpp + tmm)) — tptmmtpptm

2tp (1 + tpptm)

1 + % (tp + tm + tptm (tpp + tmm)) - tptmmtpptm

= e
= e
= e

= e

B.6.

—(0j+0;)0z/2
—(0j—0;)0z/2
—(0541/24541/2)02/2

—(0541/2—Tj41/2)02/2

APML-LWA

-1 + TYm + tmtpp (’Yp + 'Ym) + tptmmtpptm (’Yp + 1)

1+ Ym + tmtpp (Yp + ¥m) + tptmmtpptm (vp — 1)
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(195)

(196)

(197)
(198)

(199)

(200)

(208)



2t (1 + tmtp)

Bp.; 209
P L+ Ym + tmtpp (9 + Ym) + tptmmtpptm (vp — 1) (209)
2t, (1 + tppt
Brm.i 1 p (1F toptm) (210)
+ Ym + tmtpp (Vp + Ym) + tptmmtpptm (yp — 1)
with 7; = poj, vp = Ym = 0z /cdt and
t, = e (0i+0;)dx/2 (211)
tom = e (0i—0;)0z/2 (212)
tyy = e*(dj+1/2+51+1/2)5w/2 (213)
tm = e (0ir1/2=Tj41/2)02/2 (214)

APPENDIX C: EXPLICIT FINITE-DIFFERENCE FORMULATION OF THE
3-D WAVE EQUATION

Using (85) and (86), the system (99) rewrites

(7= 02) By = (Cogs—Ta)to—To  (F—0)ts = (Cor —Ta)Ex—p
(% —oy) By = (Cya% —0y) Uy (% —oy)uy = <Cya% - Ey) E,
(% - Uz) Elzz = (clz% - ?—z) Uy (aat Uz) U, = (Cz% - Ez) E,
Ef” = Ez:c + Emy + Emz
(215)

The discretization using (94) and (95) together with the definitions (1), (2), (3)
and (4) gives (without loss of generality, we consider the algorithm for given time
step i and location (j,k,1), dropping thus the indices i,j,k and 1 for a more concise
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presentation)

/2 —1/2 _ /2 1—1/2
(Ezz 1/2,0,0 Ez:c 1/2,0,0) /5t = 0z1/2,00 (Ezzc 1/2,0,0 + Ezz 1/2,0 0) /2
+ Cz1/2,00 (Ug 1,0,0 — Ug 0,0,0) [z
+ Egoc 1/2,0,0 Uy 1,00 T Uz 0,00) /2
- J; 1/2,0,0
/2 1—1/2 _ 11/2 / 1/2
(Emy 1/2,0,0 Ezy 1/2,0,0) /‘5t = 0Oy1/2,0,0 ( zy1/2,0, ot my 1/2,0 0) /2
€y 1/2,0,0 y1/2 1/2,0 y1/2 —1/2,0 /8y
0y1/2,0,0 y1/2 1/20"‘“;,1/2 ~1/2,0 /2
11/2 1—1/2 _ /1/2 E~ 1/2
(sz 1/2,0,0 sz 1/2,0,0) /6t = 0z1/2,0,0 ( z21/2,0, 0 zz 1/2,0 0) /2
+ 217200 z1/201/2 z1/20—1/2 /6%
+ 0z1/200 z1/201/2+“21/2071/2 /2
(Uio,o,o _Ugo,o,o) /ot = 020,00 (u ioooﬂLUmoo/o) /2
1/2 1/2
+ 2000 < 2 1/2,0,0 z—l/zoo) 0z
_ g2 g2
T 02000 ( 21/2,00 T w—1/200)/2
1/2
—  P0,0,0

Oy 1/2,1/2,0 y1/2 1/20+“y1/2 1/2, 0) /2

1/2 1/2
E, 1/2,1,0 - E, 1/2,0,0 /8y

1/2 1/2
E, 1/2,1,0 +E, 1/2,0,0 /2

(ugl, 1/2,1/2,0 — “2 1/2,1/2,0) /ot

Cy1/2,1/2,0

+ +

Oy1/2,1/2,0

(“i 1/2,0,1/2 u) 1/2,0,1/2) /6t = 0s1201/2 ( 21/2,01/2 T u) 1/2,0 1/2) /2

5/ /2
+ o1z (Biper = Eie00 /62
_ 51/2 /2
T Taa002 \Eipen T B 200 /2
with
1/2 _ pa1)2 /2 /2
Ew 1/2,0,0 — Eavz 1/2,0,0 + E:cy 1/2,0,0 + Eww 1/2,0,0

This gives the computer programmable form
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/2
Ezcz 1/2,0,0

/2
E:(:y 1/2,0,0

E11/2

z21/2,0,0

1
Uz 0,0,0

1
Uy 1/2,1/2,0

1
Uy1/2,0,1/2

where, for a given location (j,k,1) and an axis v = {z,y or z} , the equivalence
between o j,k.1, Bpu jk,is Bmu jkid> Yu gkt 30 Ou jkly Cu kg a0d Ty jk, is given by

(1—o0y j,k7l6t/2) / 1+ O'uj,k,ltst/Q)

ot (1/0u + Euj,k,l/Q) /(1 + O'uj,k,l(st/Q)

ot (1/(51,& — Euj,k,l/Q) / (1 + auj,k,lét/Q)
(St/ (1 + Uu]‘,k,l(st/Q) = 05(5t/ (1 + au]-,k,l)

Qo j,k,1 =
Bpujkl =
mu j,k, =

Vu gk, =

The values of ay, j,k,15 Bpu j,k,l> Bmu j,k,i are obtained from one of the formulas sum-

marized in Appendix B.
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FIG. 1 Diagram showing the positions of E and B on the discrete space-time grid.
E and B are both staggered in space and time.
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Vacuum APML layer
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FIG. 2 A plane wave striking a APML layer will generate multiple reflections inside
the layer that must be taken into account in order to calculate the coefficient of
reflection.
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FIG. 4 Coefficient of reflection of the APML-Exponential as a function of wave-
length for various values of p.
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FIG. 5 Coefficient of reflection of the APML-SSA as a function of wavelength for
various values of p.
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FIG. 6 Coefficient of reflection of the APML-LWA as a function of wavelength for
various values of p.
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FIG. 7 Comparison of APML and PML coefficient of reflection as a function of
wavelength in 1-D.
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FIG. 8 Coefficient of reflection of the PML as a function of the angle of incidence.
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FIG. 9 Coefficient of reflection of the PML-sigma adjusted as a function of the
angle of incidence.
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FIG. 10 Coefficient of reflection of the APML-exponential (p=-1) as a function of
the angle of incidence.
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FIG. 11 Coefficient of reflection of the APML-exponential (p=1) as a function of
the angle of incidence.
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FIG. 12 Coefficient of reflection of the APML-Hybrid as a function of the angle of
incidence.

40



—o0— 1=4
—0— 1=8
—4&—1=16
—v—1=32
—0— 1=64

—+— =128

—x%— =256
—x— =512
+=1024

Coefficient of reflection

0.0 0.5 1.0 15 2.0
Angle of incidence ¢ (rad)

FIG. 13 Coefficient of reflection of the APML-SSA (p=-1) as a function of the
angle of incidence.
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FIG. 14 Coefficient of reflection of the APML-SSA (p=1) as a function of the angle
of incidence.
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FIG. 15 Coefficient of reflection of the APML-LWA (p=-1...4+1) as a function of
the angle of incidence.
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FIG. 16 Comparison coefficient of reflection of PML and APML as a function of
the angle of incidence for 7 = 27 /w ~ 206z /c.
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